Kì dị hấp dẫn và lỗ đen Mêtric_Schwarzschild

Tại r = rs thì mêtric trở lên kỳ dị (còn gọi là chân trời sự kiện), thực ra đây là kỳ dị do chúng ta sử dụng hệ tọa độ cầu chứ không hẳn là kỳ dị thực. Khi lựa chọn hệ tọa độ phù hợp, kỳ dị này biến mất và chỉ có r = 0 mới là điểm kỳ dị vật lý.

Kì dị tại r = rs chia tọa độ cầu Schwarzschild thành hai miền không liên thông với nhau. Miền ngoài với r > rs liên hệ với trường hấp dẫn của sao hay hành tinh. Miền trong 0 < r < rs, mà chứa kỳ dị r = 0, tách biệt hoàn toàn với miền ngoài bởi kì dị tại r = rs. Hệ tọa độ Schwarzschild không thể hiện ý nghĩa vật lý của sự kết nối giữa hai vùng này, mà có thể coi chúng là hai nghiệm riêng biệt. Do vậy kì dị tại r = rs là một ảo ảnh hay kì dị tọa độ. Như hàm ý của tên gọi, kì dị này xuất hiện do sự lựa chọn các điều kiện hệ tọa độ. Khi thực hiện chuyển sang hệ tọa độ khác (ví dụ tọa độ Lemaitre, tọa độ Eddington-Finkelstein, tọa độ Kruskal-Szekeres, tọa độ Novikov, hay tọa độ Gullstrand–Painlevé) mêtric Schwarzschild trở lên liên tục tại r = rs và cho phép mở rộng miêu tả không thời gian tại r nhỏ hơn rs. Và cho phép liên hệ giữa miền ngoài và miền trong.[6]

Nhưng trường hợp r = 0 lại hoàn toàn khác. Nếu yêu cầu mêtric Schwarzschild thỏa mãn cho mọi r thì sẽ gặp trở ngại tại kì dị vật lý này, hay còn gọi là điểm kì dị hấp dẫn. Để thấy được đây là kì dị vật lý, cần chỉ ra những đại lượng độc lập với cách chọn hệ tọa độ hay gọi là bất biến tọa độ. Một trong những đại lượng quan trọng là bất biến Kretschmann, bằng bình phương của tenxơ độ cong Riemann:[7]

R α β γ δ R α β γ δ = 12 r s 2 r 6 = 48 G 2 M 2 c 4 r 6 . {\displaystyle R^{\alpha \beta \gamma \delta }R_{\alpha \beta \gamma \delta }={\frac {12{r_{s}}^{2}}{r^{6}}}={\frac {48G^{2}M^{2}}{c^{4}r^{6}}}\,.}

Tại r = 0 đại lượng này có giá trị vô hạn hay ám chỉ tồn tại một kì dị hấp dẫn. Và không thời gian miêu tả bởi mêtric không còn xác định tốt nữa. Trong một thời gian dài các nhà vật lý nghĩ rằng nó không phải là đại lượng mang ý nghĩa vật lý. Sau đó, những hiểu biết sâu sắc hơn về thuyết tương đối tổng quát giúp họ nhận ra rằng những vùng kì dị hấp dẫn là bản chất không tránh khỏi của lý thuyết và không phải là trường hợp đặc biệt. Những mêtric như vậy miêu tả những đối tượng trong vũ trụ như lỗ đen hay các sao đặc.

Nghiệm Schwarzschild, đúng cho mọi r > 0, còn gọi là lỗ đen Schwarzschild. Nó là nghiệm chính xác của phương trình trường Einstein, mặc dù nó có một số tính chất kỳ lạ. Đối với r < rs tọa độ xuyên tâm Schwarzschild r trở thành kiểu thời gian và tọa độ thời gian t trở thành kiểu không gian. Một cung với r là hằng số sẽ không còn là tuyến thế giới của một hạt hay quan sát viên, ngay cả khi có một lực tác động lên nó nhằm giữ nó tại đó; điều này xảy ra bởi vì không thời gian trở lên rất cong khiến chiều hướng của nguyên nhân và kết quả (nón ánh sáng tương lai của hạt) hướng về vùng kì dị. Bề mặt r = rs được gọi là chân trời sự kiện của lỗ đen. Khi photon băng qua bề mặt này thì nó không thể thoát ngược trở ra được. Quá trình suy sụp hấp dẫn của các thiên thể trong vũ trụ khi bán kính R sau giai đoạn này nhỏ hơn bán kính Schwarzschild biến chúng trở thành lỗ đen.[8]

Tài liệu tham khảo

WikiPedia: Mêtric_Schwarzschild http://astroreview.com/issue/2012/article/black-ho... http://books.google.com/?id=QagG_KI7Ll8C http://books.google.com/books?id=2q5Rdjn0qfgC&lpg=... http://books.google.com/books?id=9S-hzg6-moYC http://books.google.com/books?id=r_l5AK9DdXsC&lpg=... http://www.scribd.com/doc/25310028/schwarzschild-1... http://pancake.uchicago.edu/~carroll/notes/ http://arxiv.org/abs/0709.2257 //arxiv.org/abs/astro-ph/9912320v1 http://arxiv.org/abs/physics/9905030